GROUP PROPERTIES AND INVARIANT SO-LUTIONS
OF EQUATICNS OF AN ELECTRIC FIELD IN THE CASE
OF NONLINEAR OHM'S LAW

Yu. P. Emets and V. B. Taranov UDC 538.4

The group properties of one-dimensional nonstationary equations of an electric field in ho-
mogeneous isotropic media with nonlinear conductivity are considered. The nonlinear Chm's
laws for which these equations have the broadest symmetry properties are determined. Or-
dinary differential equations determining invariants solutions are obtained; the order of the
equations is lowered or they are integrated to the end.

Deviations from the linear Ohm's law are observed already in comparatively weak fields for such
conducting media as plasma and semiconductors. In calculating the electromagnetic fields, OChm's law is
usually taken from experimental data or calculated theoretically within the framework of a concrete physi-
cal model of conductivity.

Here, the problem is posed differently: an arbitrary form of Ohm's law j = j(E) is taken and one~
dimensional nonstationary equations of an electric field in a homogeneous medium with consideration of
displacement currents (nonlinear telegraphic equation), and in a quasistationary approximation (nonlinear
equations of heat conduction) are considered. In conducting a group classification of these equations we
isolate a set of Ohm's laws for which symmetry of the equations is broadened. It turns ouf that these Qhm's
laws are the same for both equations and the group admissible by the nonlinear telegraphic equation is the
subgroup of the group admissible by the nonlinear equation of heat conduction.

It is interesting that the dependences j(E) obtained thereby are realized in practice in a sufficiently
wide range of variations of j and E and correspond to the nonlinear Ohm's laws found in plasma and semi-
conductors.

The group clagsification of the nonlinear equation of heat conductionis givenby L. V. Ovsyannikov in
{1], where the form of all invariant solutions was also obtained. Here, we will give a parallel group classi-
fication of both nonlinear equations —telegraphic and heat conduction (the latter is taken in the form of the
equation for the electric field strength E more usual for electrodynamics) — and we find the explicit form
of the ‘invariant solutions or the simplest form of ordinary differential equations which determine the in-
variant solutions.

1. For the one-dimensional model
E={0,0,E(z,2)}, H={0,H (z,t),0
the Maxwell equations

E  n 9H oH e i.1)
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lead to the nonlinear telegraphic equation for E

NE NE o OF dj
i —0(E) 5 =0, o(E)=—F

o _ 1.2)
a2 ot = dE

where the transformation

4n W 4n
x*—TV?x’ i* =—t
is assumed fulfilled, and the asterisks are dropped.

For quasi-stationary processes, when we can neglect displacement currents, we arrive at the equation

K 1

_a?"fd(E)_at_=0 (L.3)
If we write this equation in symbols of current density j, it coincides in form with the equation ana-

lyzed by L. V. Lvsyannikov in [1]. Actually, transforming Ohm's law, we obtain

] N A L dE() )
w0 =5 en="EY (1.4)

Hence, we see that j corresponds to the temperature and the differential resistance p(j) to the coeffi-
cient of heat conduction of the substance.

It should be noted that the problem of the criterion of quasi-stationarity of the process in nonlinear
electrodynamics is complicated considerably and its examination is beyond the scope of this article.

2. In determining the continuous group of transformations G, admissible by Eq. (1.2}, we proceed,
according to the general theory [2-4], from the condition that (1.2) determines the relative invariant of a
twice continuous group G, 2,

For the vectors gi(x, t, E) (i=1, 2, 3) of the one-parameter group

8 2 8
X=eXo=8 - + 85 + 8 —p
(B} = e¥e,t, f = const, k=1, .. ., r) (2.1)

we obtain a system of characteristic equations of infinitesimal transformations

B 5 —otf =0, 2%+t =0
2y f ot =0, B —E2 =0, §' —E2=0 2.2)
et = Eg? =§31‘?E =0, c=dj/dE

Here, the lower indices denote differentiation with respect to the corresponding variables, and the
prime denotes the complete derivative with respect to E,

In the case of nonlinear conduction {(¢'(E) = 0) the solution of system (2.2) has the form
B=clztet B=ct+4e B=cE+e (2.3)
whereby the dependence o (E) obeys the condition
(e*E +- 8 o' +eto =0 , (2.4)

In the most general case, when Ohm's law is arbitrary (and consequently, the differential conduction
o (E) can be arbitrary), fulfillment of (2.4) is possible only when

et =et=e=0
and the base of the group is formed by the operators
)
Xy=o-, X,=— (2.5)

oz’
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Broadening of the group is possible on limiting the arbitrariness in selecting the function o (E) by
assuming that it satisfies condition (2.4) with nonzero constants.

In this case, it follows from the condition ¢ '(E) = 0 that only one of the constants in (2.4) can be se-
lected as arbitrary. Without limiting generality, we can assume that this is el. Then, e! = gel, €° = be!,
where a and b are fixed constants.

In this case, the group is broadened by the addition of the operator

Xy =g A4 b2 (@B + b) (2.6)
Integrating (2.4), we obtain
o (E) = {c(aE + b)_l/a when a == 0 ©.7)
cexp(— E/b) when: a=0

and then, taking into account that o (E) = dj/dE, we find

4

a_1(aE+b)1“1’“—}—d when a==0, a==1
J(E)= cIn(E-+0)4d when ¢ = 1 (2.8)
—becexp(— E/b)+d when @ =0

The sense of constants a, b, ¢, and d in Egs. (2.7), (2.8) is determined by the physical content of the
problems being considered. If, for example, we set j = 0 when E = 0, which corresponds to the assumption
of the absence of extraneous currents in the medium, then, Eqs. (2.8) take the form

iigo)) =1- (1 - E%) V:: : 1a_>1 ia:;) =t 29
o ff) . (1 N E% > wt:le:::(ei b (2.11)
IE) 4 exp(—E[E) whena=0 (2.12)

] {o°)

Such dependences, or more exactly some of their branches, are realized in practice in a sufficiently
wide range of variation of j and E. Thus, dependence (2.12) is the nonlinear Ohm's law of high-temperature
plasma in the case of the development of an acoustic instability in it [5]. In low-temperature plasma with
nonequilibrium conductivity Ohm's law has the form of (2.9) [6].

3. The group classification of the equation of the field for quasi-stationary processes (1.3) is carried
out in the same manner as the preceding case. To find the vector £1, we obtain a system of characteristic
equations’

g, — oF % =0, En— 2§iE —cgt =0 3.1)
(8 —ENo+ 8" =0, =8 =L =EEm=0
An analysis of the solutions of this system leads to the following result: for an arbitrary law of non-
linearity of the medium, the base of the group admissible by Eq. (1.3) is formed by the operators

o 5 3.2
X =iy Xy=m o, Xy—mzf2l ®-2)

Broadening of the group occurs for the same Ohm's laws (2.8), which leads to broadening of the group
of the nonlinear telegraphic equation. In this case, the operator

287



) a
Xy =+t (aE +b) e (3.3)

is added.

" Further broadening of the group occurs for the same particular value a = %, and there is an addi-
tional operator

Xy = & o+ 2 (E + 4b) o (3.4)

As we see, the Lie group of the nonlinear telegraphic equation {1.2) is a subgroup of the group ad-
missible by the nonlinear equation of heat conduction (1.3).

4. Proceeding to finding the invariant solutions of rank 1 of Eq. (1.2), we make certain simplifications.

For an arbitrary Ohm's. law this equation admits a group with operators

[i} a '
X, = R Xz’—‘ﬁ 4.1)
Broadening of the group occurs when
exp(— E) (A) .2)
e ={E‘”“ ®

The entire diversity (2.7) of nonlinear functions ¢(E) reduces to these two main cases. If (4.2) ocecurs,
the operator

v ttE ey @ )

8= d 8 ]
@5t FaE e () (4.4)

is added.

To obtain essentially different invariant solutions, we must construct an optimal system of dissimilar
subgroups [1]. In the case of the telegraphic equation the number of operators is small, and we can limit
ourselves to simple inspection of the one-parameter subgroups.

1°. We will consider the solution on a one-parameter subgroup X =X + oz'1X2 admissible by Eq. 1.2)
for arbitrary o (E).

The invariants of the operator X determine the form of the solutions (traveling waves) E = E(x—at),
for which follows from (1.2) the equation:

d2F dE

(1—0(:2)'—dET+O(G(E)7€-=O (E=x—-at) (4-5)
Hence, we see that, just as for the linear telegraphic equation (o = const), waves propagating with

velocity o = +1 do not exist. For all waves with velocities @ » +1 and « = 0, the transformation ¢* = at/

(1— ¢® reduces Eq. (4.5) to the form (we drop the asterisks)

o (B =0 (4.6)
In case (A) (4.6) has the solution
_{111 {0/C) [exp(CE+Co)— 11}, C 50 : @.7)
T lIn(ECy) ‘

where C; and C, are constants of integration.
In case (B) the solution is given by the formulas

N dE '
g+{’2:SCl~1nE whena!:'l
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it 1/ (m+1) when a5=1
E ( E+C> a==0 (4.8)

C = E— S dE 1
1§+ 2 C1m Em+1/01’n m:;—’l

The last solution can be rewritten in a form convenient for analysis

du
um4 1 ?

E=EF m==0 - {4.9)

Dby

assuming {depending on the value of m)
1/Cm=4q™ (>0
prerforming the transformation
E =qE* C& + C, = ¢8*

and dropping the asterisks. We will write out these solutions in the case of the plus sign in (4.9) for certain
values of m )

10
E=E—In(l+5)  hen m—1 10
E=E —arctigk when m = 2 4.11)
_ 1 &+ 1y { . pE—1 : .
E=FE — V§ ._FIH[EZ——E—Q—i}-V?arGtg( ]/'3—) (4.12)

when m =3 (@ = ¥).

Thus, the nonlinear telegraphic equation allows a solution of the traveling-wave type of different form,
unlike the linear which allows waves only of a special form (exponential).

2°. We will consider invariant solutions on subgroup X;. The solutions have the form

_{ln[tF(E)] 0y 4.13)
LR e (B)

where ¢ = x/t.

Equation (1.2) leads to an ordinary differential equation for F(¢)
F r bl
[a-eF+e— 5] +afu—pf+1][u+ni—1]=0 (4.14)
The value a = 0, for which Eq. (4.14) is easily integrated, corresponds to case (A)
x4t

m[FEor + GVIE=—27 |25 ], cest
E= - (4.15)
In[+ 5+ a0+ 3 @x | ZEL] -

5. We will now consider the invariant solutions of rank 1 of the nonlinear equation of heat conduction
(1.3) which allows for an arbitrary ¢ (E) the group

3 3
Xy =5, Xy=—, X_.x———}—Ztat (5.1)

The group is broadened in the case of special funcéions o{E) given in (4.2)

F a
Tttt o (A) (5.2)
4= F )
T 5 . L‘a 4—aE (B)
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In addition, in case (B) when g = 14, the operator

i} 2
X5=$2—a;-+$E—a—E— (5.3)

is added.

When obtaining the invariant solutions, we will be guided by the optimal system of dissimilar sub~
groups found by L. V. Ovsyannikov [1].

1°. Solutions of the wave type E = E(x—at) are determined now from the equation

d2E dE
TiaT'f"“?(E)'Tg:O: E=x—at 6.4)

Unlike the preceding case (4.5), the waves propagate with arbitrary velocities. Performing the trans-
formation ¢*»=at (the asterisks will be omitted below), we reduce Eq. (5.4) to the form of (4.6), which per-
mits extending the results of paragraph 1° of the preceding section to the case under consideration.

2°, We will consider the solution on subgroup X = oXj + X;, having the form

E=1In [x1/1+‘1eﬁ(5)], E = [x1/1+¢eF(E)]”'

in cases (A) and (B), respectively. Here, ¢ = xt=A+ @/ A+20) 504 F satisfies the equation

v | 44a cadea) ata), —Fe 1 AL 1
T e (g ) — g =0 - 69)

a = 0 corresponding to case (A). By direct check, we can be convinced that Eq. (5.5) admits the operator

g 0 142 9 X
Y=tg+ T oF | 5.6)
By means of Y, we obtain
E:ez’ F=(I)(Z)+11-:§_—%§Z (5-7)
s f 1 — 7 1 — s
o — (1 —pae q>)c1> —2(t— e ¢)+a’(<_1) 12 =0 (5.8)

In case (A) for @ = 0 (X = X,) Eq. (5.8) is integrated to the end and leads to the following expressions
for E: '
.oz 1 ¢ (5.9)
E___{ln [sz.‘exp(c1 —;)———C—I—(ax —1-?;1—)], C, =0

n [Cyt + 22/ 2¢)

4 For the other limiting value o~ (self-preserving solution on operator X;) Eq. (5.8) admits the first
integral

D —2In (@ 42 —Y,e® D=, (5.10)
In case (B), there is a particular solution of the form
z> @ 1

3°. The solution on subgroup X = o Xy~X; + X;. Here, we have, respectively, for (A) and (B)
E =1In [_:_ eF(E)] , E = [_i_ eF(E):]‘z (E — teax)

and F is determined from the eguation

a2ng” + ang'\ + e-F (1 _ EFI) + aazgg (FI)2 — O (5-12)
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Ifq =0, (5.12) admits the first integral (¢ = &%)

dF | {dF 1 _
= +]n(ﬁ'1)+‘ﬁe F=0 (6-13)

4°. We proceed to the subgroup aX;—/;X; + X,. For (A) and (B), we have
E = In [2%F®)], E = [xzeF(E)]f‘

where ¢ = e'x 2% and F satisfies

Q0282 4. QaPEE |- ok F’ — 1 — 11,0 FEF' + 2a (4 — ofF') = (5.14)
whence, follows:
2jflf+g—2te Fd”+2(1—%)—1=q (5.15)
where y = ¢ In t. Whena =0, Eq. (5.15) admits the first integral
2L p e TPy =0 (5.16)

5°. In case (B), when g = 1/4, the nonlinear equation of heat conduction is integrated to the end on sub-
group aX,+ X;. The solutions have the form

E=zF (%), E=t+ oz
For F, we obtain the equation

d2F 1 dF
2 T _WWZO 5.17)

integrating which, we have the expression for E

E—z[— 3’;2’ (Care+2)]"
i+ 3) - eam Bt finfo —E] oo 2o (2T -
2 V 5 orotg a1 %(2 =zt “ﬂ ("=T§cl) (5.18)
6°. We will consider, finally, the solution on subgroup X; + X5. Here, we have

E=(+2z)F), §=%(ﬁ?>2

where F obeys the condition

e )L =0 (5.19)
which by means of substitution
is reduced to the form

dp 1 1 ao
P(—E-l—asr)——q)(i-———cp—g)zg, P((D)=7 (5-20)
Equation (5.20) admits the particular solution & =1, to which corresponds

= [z (1 ES x)]‘/z s (5 n21>
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7°. We will consider the solution on subgroup X; admissible by Eq. (1.3) for arbitrary ¢ (E). The in-
-variants of operator X

I, =214, I,=E

determine the form of the unknown solutions
E=E@E), E=22/4

and from (1.3) follows the equation
d*E 1 dE
S [ tem] =0 (5-22)

6. Some of these solutions of the nonlinear equation of heat conduction were obtained earlier by
other authors.

The ordinary differential equations for the invariant solutions on subgroup Xj + oX; in case (B) were
obtained by G. I. Barenblatt [7] by the dimensionality theory method and solved by him approximately.

Equation (5.10) was obtained and solved by T. R. Soldatenkov approximately in an examination of the
problem of penetration of an electromagnetic field into plasma (problem of the nonlinear skin effect) [5].

The form of all possible invariant solutions of the nonlinear equation of heat conduction, as already
noted, was given by L. V. Ovsyannikov in [1].
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