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The group proper t ies  of one-dimensional  nonstationary equations of an e lec t r ic  field in ho-  
mogeneous isotropic media with nonlinear conductivity are  considered.  The nonlinear Chin 's  
laws for which these equations have the broades t  s y m m e t r y  propert ies  are  determined.  Or-  
dinary differential equations determining invariants solutions are  obtained; the order  of the 
equations is lowered or  they are  integrated to the end. 

Deviations from the linear Ohm's law are observed already in comparatively weak fields for such 
conducting media as plasma and semiconductors. In calculating the electromagnetic fields, Ohm's law is 
usually taken from experimental data or calculated theoretically within the framework of a concrete physi- 
cal model of conductivity. 

Here, the problem is posed differently: an arbitrary form of Ohm's law j = j(E) is taken and one- 
dimensional nonstationary equations of an electric field in a homogeneous medium with consideration of 
displacement currents (nonlinear telegraphic equation), and in a quasistationary approximation (nonlinear 
equations of heat conduction) are considered. In conducting a group classification of these equations we 
isolate a set of Ohm's laws for which symmetry of the equations is broadened. It turns out that these Ohm's 
laws are the same for both equations and the group admissible by the nonlinear telegraphic equation is the 
subgroup of the group admissible by the nonlinear equation of heat conduction. 

It is interesting that the dependences j(E) obtained thereby are realized in practice in a sufficiently 
wide range of variations of j and E and correspond to the non'linear Ohm's laws found in plasma and semi- 
conductors. 

The group classification of the nonlinear equation of heat conduction is giYenby L. V. Ovsyannikov in 

[i], where the form of all invariant solutions was also obtained~ Here, we will give a parallel group classi- 
fication of both nonlinear equations-telegraphic and heat conduction (the latter is taken in the form of the 
equation for the electric field strength E more usual for electrodynamies) - and we find the explicit form 
of the'invariant solutions or the simplest form of ordinary differential equations which determine the in- 
variant solutions. 

I. For the one-dimensional model 

E ----- {0, O, E (x, t)}, 

the Maxwell equations 

tI  = { 0 , / / ( x ,  t), 0} 

OE ~ OH OH 8 ON ~ ] (  
O~ = c at , o---Z= T ~ - I -  E) 

(1.1) 
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lead to the nonl inear  t e l eg raph ic  equat ion for  E 

O~E O~E OE 
Oz~ Ot-' ~ (E)  - ~  = O, 

di (1.2) 

~r the t r a n s f o r m a t i o n  

4n 4n t x * - - l /  ---r t * =  

is a s s u m e d  fulfi l led,  and the a s t e r i s k s  a r e  dropped.  

Fo r  quas i - s t a t i ona ry  p r o c e s s e s ,  when we can neglec t  d i s p l a c e m e n t  c u r r e n t s ,  we a r r i v e  at  the equat ion  

O~E (1 o3> - ~ (g) ~ = o ~X~ O l  

If we wr i te  this equat ion in symbo l s  of c u r r e n t  dens i ty  j, i t  co inc ides  in f o r m  with the equat ion ana-  
lyzed  by L. V. Lvsyannikov  in [1]. Actual ly ,  t r a n s f o r m i n g  O h m ' s  law, we obtain 

0 . O~ dE : 0; (,i 
~/- '  P ( ] )~  di 

Hence ,  we see that  j c o r r e s p o n d s  to the t e m p e r a t u r e  and the d i f fe ren t ia l  r e s i s t a n c e  p(j) to the coeff i -  
c ient  of  hea t  conduct ion  of  the subs tance .  

It should be noted that  the p r o b l e m  of the c r i t e r i o n  of quas i - s t a t i ona r i t y  of  the p r o c e s s  in non l inea r  
e l e c t r o d y n a m i c s  is compl i ca t ed  c ons i de r a b ly  and its examina t ion  is beyond  the scope  of this a r t i c l e .  

2. In de t e rmin ing  the cont inuous g roup  of t r a n s f o r m a t i o n s  G r ,  admis s ib l e  by Eq. (1.2), we p roceed ,  
acco rd ing  to the ge ne ra l  t heo ry  [2-4],  f r o m  the condi t ion that  (1.2) d e t e r m i n e s  the r e l a t ive  inva r i an t  of a 
twice cont inuous g roup  Gr(2). 

Fo r  the v e c t o r s  }i(x, t, E) (i = 1, 2, 3) of the o n e - p a r a m e t e r  g roup  

(~i = e~i ,  e ~ = const, k = i . . . . .  r) (2.1) 

we Obtain a s y s t e m  of  c h a r a c t e r i s t i c  equat ions  of in f in i tes imal  t r a n s f o r m a t i o n s  

~ --  ! ,?  --  z~? = O, 2~,~. + ~,~ + ~'~ = 0 

2~E + Z~ ~ = O, ~ - -  ~2 = O, ~t 1 --  ~j' = 0 

~E I = ~ E  ~ ~ E  = 0 ,  a - ~ d ] / d E  

(2.2) 

Here ,  the louver indices  denote d i f fe ren t ia t ion  with r e s p e c t  to the c o r r e s p o n d i n g  v a r i a b l e s ,  and the 
p r i m e  denotes  the comple te  de r iva t ive  with r e s p e c t  to E; 

In the case  of  nonl inear  conduct ion  {~'(E) ~ 0) the solut ion of s y s t e m  (2.2) has  the f o r m  

~1 = elx + e ~, ~2 = e!t -~ e 3, ~8 :_ e4E + e ~ (2.3) 

whe reby  the dependence ~(E) obeys  the condi t ion 

(e4E -~- e 5) o' + e l (r ~ 0 (2.4) 

In the m o s t  gene ra l  c a se ,  when O h m ' s  law is a r b i t r a r y  (and consequent ly ,  the d i f fe ren t ia l  conduct ion 
~(E) can  be a r b i t r a r y ) ,  fu l f i l lment  of  (2.4) is poss ib le  only when 

e I ~ -  e 4 ~ e 5 ~ 0 

and the base  of  the g roup  is f o r m e d  by the o p e r a t o r s  

o 0 (2.5) X I = ~ - ,  X~ = 
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Broadening of the group is possible on limiting the arbitrariness in selecting the function e(E) by 

assuming that it satisfies condition (2.4) with nonzero constants. 

In this case, it follows from the condition ~'(E) ~ 0 that only one of the constants in (2.4) can be se- 

lected as arbitrary. Without limiting generality, we can assume that this is e I. Then, e 4 = ae t, e 5 = be i, 
where a and b are fixed constants. 

In this case, the group is broadened by the addition of the operator 

0 O ( a E +  b) o (2.6) X3 = x-~x + t-gE-t- OE 

Integrating (2.4), we obtain 

~ (aE q- b)-1 / a 

and then, taking into account that or(E) = dj/dE, we find 

when a @ 0 (2 07) 
when~ a = 0 

] ( E )  = 

o (aE + b) 1 - 1 / a  _~ d 

c ln (E  4 c b ) @ d  

--  bcexp (-- E /b) + d 

when a@O, a ~ - t  

when a : 1 

when a = 0 

(2.8) 

The sense of constants a, b, e, and d in Eqs. (2o7), (2.8) is determined by the physical content of the 

problems being considered. If, for example, we set j = 0 when E = 0, which corresponds to the assumption 

of the absence of extraneous currents in the medium, then, Eqs. (2.8) take the form 

E)= w h e n a > t  . or a < 0  (2.9) 
/(~) = I - -  - -  /(Eo) .t ~ " ( a ~ _ l - - t / a > 0 )  

' E = when 0 < a < l  /iF') = l - - ( f  -k ) (2.10) 
i (~) ~ (a < o) 

. . . . .  ( , §  ) (2.11) /(E) In E when a = l 
io ~-o (io--= i fie-- 1) No)) 

I'(E) = f - - e x p ( - - E / E o )  when a = 0  (2.12) 
I (~) 

Such dependences ,  o r  m o r e  exac t ly  some of t he i r  b r a n c h e s ,  a r e  r e a l i z e d  in  p r ac t i c e  in  a suf f ic ien t ly  
wide r ange  of v a r i a t i o n  of j and E. Thus ,  dependence  (2.12) is the n o n l i n e a r  O h m ' s  law of h i g h - t e m p e r a t u r e  
p l a s m a  in  the case  of the d e v e l o p m e n t  of an  acous t i c  i n s t a b i l i t y  in  i t  [5]. In l o w - t e m p e r a t u r e  p l a sma  with 
n o n e q u i l i b r i u m  conduc t iv i ty  O h m ' s  law has  the f o r m  of (2.9) [6]. 

3. The g roup  c l a s s i f i c a t i o n  of the equa t ion  of the f ield for q u a s i - s t a t i o n a r y  p r o c e s s e s  (1.3) is  c a r r i e d  
out  in , the  s a m e  m a n n e r  as  the p reced ing  case .  To find the v e c t o r  ~i, we obta in  a s y s t e m  of c h a r a c t e r i s t i c  
e q u a t i o n s  

~a ~t a=O, ~" a 1 
(2~x*--~,=)z+Pz'=0, ~E~=~2=~=~=0 

An analysis of the solutions of this system leads to the following result: for an arbitrary law of non- 

linearity of the medium, the base of the group admissible by Eq. (1.3) is formed by the operators 

0 0 0 0 (3.2) 
X l = ~ - x '  X 2 = ~ - ,  X a = x ~ - - } - 2 t  0-~ 

Broadening of the group occurs for the same Ohm's laws (2.8), which leads to broadening of the group 
of the nonlinear telegraphic equation. In this case, the operator 
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0 0 (3.3) X4 = X-~x -~ t O~ 4- (aE @ b) 0 OE 
is added. 

F u r t h e r  b roaden ing  of  the g roup  o c c u r s  for  the s a m e  p a r t i c u l a r  value a = ~ ,  and the re  is an addi-  
t ional  o p e r a t o r  

X~ z2 o + x ( E + 4 b )  o = ~-~ 0k (3.4) 

As we see ,  the Lie g roup  of  the nonl inear  t e l eg raph ic  equa t ion  (1.2) is a subgroup  of  the g r o u p  ad-  
mis s ib l e  by  the non l inea r  equat ion of  hea t  conduct ion  (1.3). 

4. P r o c e e d i n g  to finding the inva r i an t  solut ions  of rank  1 of  Eq. (1.2), we make c e r t a i n  s impl i f i ca t ions .  

Fo r  an  a r b i t r a r y  Ohm's .  law this equat ion admi t s  a g roup  with o p e r a t o r s  

0 0 (4.1) X~ = ~-x, X2 = 0~- 

Broaden ing  of the g roup  o c c u r s  when 

S exp(- -  E) (A) (4.2) 
6(E) = [ E_lla (B) 

The en t i re  d i v e r s i t y  (2.7) of  nonl inear  funct ions ~(E) r e d u c e s  to these  two main  c a s e s .  If (4.2) o c c u r s ,  
the o p e r a t o r  

0 0 0 x -~x + t -~ (A) (4.3) OE 
X3= 0 [ x -~z + t ~ + aE ~ ,(B)~ (4.4) 

is added.  

To obtain e s s e n t i a l l y  d i f fe ren t  invar ian t  so lu t ions ,  we m u s t  c o n s t r u c t  an op t ima l  s y s t e m  of d i s s i m i l a r  
subgroups  [1]. In the case  of  the t e l eg raph ic  equat ion  the n u m b e r  of  o p e r a t o r s  is  sma l l ,  and we can  l i m i t  
o u r s e l v e s  to s imp le  inspec t ion  of the o n e - p a r a m e t e r  subgroups .  

1 ~ We will  c o n s i d e r  the solut ion on a o n e - p a r a m e t e r  subgroup  X = X1 + ~-lX2 admis s ib l e  by Eq. (1.2) 
fo r  a r b i t r a r y  a(E) .  

The inva r i an t s  of  the o p e r a t o r  X d e t e r m i n e  the f o r m  of  the solut ions  ( t ravel ing waves)  E = E ( x - s t ) ,  
fo r  which follows f r o m  (1.2) the equat ion:  

cz~ d~F dE ( i -  , ~ + ~ ( g ) ~ = O  (~=~-~t)  (4.5) 

Hence ,  we see that,  just  as  for  the l inea r  t e l eg raph ic  equat ion (~ = cons t ) ,  waves  p ropaga t ing  with 
ve loc i ty  ~ = ~1 do not exis t .  Fo r  all  waves  with ve loc i t i es  ~ ~ ~: 1 and c~ = 0, the t r a n s f o r m a t i o n  ~* = ~ /  
(1--~2) r educes  Eq. (4.5) to the f o r m  (we d rop  the a s t e r i s k s )  

d2E q- z (E) ~ = 0 d~Z 

In case  (A) (4.6) has  the solut ion 

in {(i / C1) [exp (C1~ + C2) --  t1}, 
E = ln(~-t- C2) 

where  C1 and C 2 a re  cons tan ts  of  in tegra t ion .  

In case  (B) the so lu t ion  is g iven by the fo rmu la s  

C~4=0 

(4.6) 

(4.7) 

f dE Q-Ca= CI-- lnE w h e n a = l  
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E=\~( 'n+ t ~ + C2)1/(~+1) 

t f dE C~ § C a = E -  ~ ~'~ + I / C,,n 

when a ~  l 
a # O  
l 
a 

The l a s t  so lu t ion  can be r e w r i t t e n  in  a f o r m  c o n v e n i e n t  for a n a l y s i s  

(4.8) 

E 

~ = E ~ -  = " •  i ' 
0 

m ~= 0 (4.9) 

assuming (depending on the value of m) 

i / C,m = ~ q= (q > o) 

p e r f o r m i n g  the t r a n s f o r m a t i o n  

and dropping the asterisks. 
values of m 

E = qE*, C,~ ~- C 2 = q~* 

We wil l  wr i t e  out  these  so lu t ions  in  the case  of the plus s ign  in  (4.9) for  c e r t a i n  

= E - -  In (i ~- E) when m = t (4.10) 

= E - -  arc tg E when m = 2 (4.11) 

= E  = t In r (E+i)~ ] i / 2 Z - - l \  6 LE -E+i ) (4a2) 

w h e n m = 3  ( a = ~ ) .  

Thus ,  the n o n l i n e a r  t e l eg raph ic  equa t ion  a l lows a so lu t ion  of the t r ave l ing -wave  type of d i f f e r en t  f o rm ,  
un l ike  the l i n e a r  which a l lows waves  only of a spec ia l  f o r m  (exponent ia l ) .  

2 ~ We well c o n s i d e r  i n v a r i a n t  so lu t ions  on subgroup  X 3. The so lu t ions  have the f o r m  

]n [tF (~)] (A) 

E = [tF (~)l a (B) 

where  4 = x / t .  

Equa t ion  (1.2) l eads  to an o r d i n a r y  d i f f e r en t i a l  equa t ion  for F(}) 

(4.13) 

�9 [ ( i  - ~ ' )  - x -  § ~ - --t-.J § - ~) 7 -  + 
(4.14) 

The value a = 0, for  which Eq. {4.14) is  e a s i l y  i n t e g r a t e d ,  c o r r e s p o n d s  to case  (A) 

E =  

[ t ~- Clx 

(4.15) 

5. We wil l  now c o n s i d e r  the i n v a r i a n t  so lu t ions  of r a n k  1 of the n o n l i n e a r  equa t ion  of hea t  conduc t ion  
(1o3) which a l lows for  an a r b i t r a r y  ~ (E) the g roup  

0 0 0 
X1 = -g~z' X~ = ~ ,  X 8 = x ~ + 2t (5.1) 

The group is broadened in the case of special functions ~(E) given in (4.2) 

i o o x~z  §  ~--i-§ Oz (A) 
(5.2) 
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In addit ion,  in case  (B) when a = ~ ,  the o p e r a t o r  

X5 = z ~ ~ + xE oE~ (5.3) 

is added.  

When obta ining the invar ian t  so lu t ions ,  we will  be guided by the opt imal  s y s t e m  of d i s s i m i l a r  s u b -  
g roups  found by L .  V. Ovsyannikov [1]. 

1 ~ Solut ions of  the wave type E = E (x--oct) a r e  d e t e r m i n e d  now f r o m  the equat ion  

d2F-, dE (5 .4 )  
a~  + az (E) -~C  = 0, ~ = x - -  ~t 

Unlike the p reced ing  case  (4.5), the waves  p ropaga te  with a r b i t r a r y  ve loc i t i e s .  P e r f o r m i n g  the t r a n s -  
format ion~*~=~$ (the a s t e r i s k s  wil l  be omi t t ed  below),  we r educe  Eq. (5.4) to the f o r m  of (4.6), which p e r -  
mi ts  extending the r e su l t s  of  p a r a g r a p h  1 ~ of  the p reced ing  sec t ion  to t he  case  under  cons ide ra t ion .  

2 ~ We will c o n s i d e r  the solut ion on subgroup  X = ~X 3 + X 4, having the f o r m  

E = In [x l t l+~eF(D] ,  E = [x~/l+~e~(~)] ~ 

in c a s e s  (A) and (B), r e s p e c t i v e l y .  He re ,  ~ = xt - 0 + ~ ) / 0 + 2 ~ ) ,  and F sa t i s f i e s  the equat ion  

t l + a ~ ( 1 + 2 a ) / ( l + a ) e - F ~ F ' + a ( i - - ~ + ~ F ' )  z i + a  ~ F "  + - ~ = 0 ( 5 . 5 )  

a = 0 c o r r e s p o n d i n g  to case  (A). By d i r e c t  check,  we can  be convinced that  Eq.  (5.5) admi t s  the o p e r a t o r  

o i + 2a 0 (5.6) 
Y =  ~ - +  l + ~  0~ 

By means  of  Y, we obtain  

. . . .  t + 2~ (5.7) 
= e' ,  F = u,  tz)  -t- ~ z 

d ) " - - i i  - -  l i + ~  e-C) (I) ' - -  2(1 _t~.  e -a,) + a (r + 2) 3 = 0 (5.8) 

In case  (A) for  ce = 0 (X = X 4) Eq. (5.8) is i n t eg ra t ed  to the end and leads to the fol lowing e x p r e s s i o n s  
fo r  E:  

E =  
In [6"d + x ~ / 2t]  

For  the o ther  l imi t ing value ~ ~ ~ ( se l f -p re se rv ing  so lu t ion  on o p e r a t o r  X 3) Eq. (5.8) admi t s  the f i r s t  
in tegra l  

(I)' - -  2 In (q)'  - 4 - 2 )  - -  1/2 e - ~  - -  (I) = C1 ( 5 . 1 0 )  

In  c a s e  (B), t h e r e  i s  a p a r t i c u l a r  s o l u t i o n  of  the  f o r m  

z~ ] a 1 E =  ~ , a : ~ -  (5.11) 

3 ~ The solut ion on subgroup  X = a "1 Xi-X3 + X 4. He re ,  we have,  r e s p e c t i v e l y ,  for  (A) and (B) 

L t J '  (~ = teaX) 

and F is d e t e r m i n e d  f r o m  the equat ion 

a2~2F" -~- a2~F ', --t- e -F ( t - -  ~F') + a a ~  ~ ( F ' )  ~ -~ 0 
(5.12) 
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If  a = 0, (5.12) a d m i t s  the f i r s t  i n t e g r a l  (4 = eZ) 

dz F In --~'-z - l  -I- e-F--~C1 

4 ~ We p r o c e e d  to the s u b g r o u p  ~X2--t/2X 3 + X 4. F o r  (A) and (B), we have 

E = In [x2e~(~)], E = [x2eF(~)l~ 

w h e r e  ~ = e tx  -2~ and F s a t i s f i e s  

2 a ~ F "  + 2a~.~F ' -1- ~ F "  --  1 --  1/ze-F~F' + 2a( t  - -  a~F') ~ = 0 

whence ,  fo l lows :  

(5.13) 

(5.14) 

2 d~F dF t e F dF ( d F ~ _ i  = 0  (5.15) 
-~- dy 2a - ~ + 2a I dY / 

w h e r e  y = ~-1 In 4" When a = 0, Eq.  {5.15) a d m i t s  the f i r s t  i n t e g r a l  

2 dF - ~ -  + 2~e  -~" + F - -  y = C1 (5.16) 

5 ~ In c a s e  (B), when a = ~ ,  the n o n l i n e a r  equa t ion  of h e a t  conduc t ion  is  i n t e g r a t e d  to the end on s u b -  
g r o u p  ~X 2 + X 5. The s o l u t i o n s  have  the f o r m  

E = xF (D, ~ = t + a/x 

F o r  F ,  we ob t a in  the equa t ion  

�9 ~ d2F t dF 
a .~-~ F, ~ -  = 0  

i n t e g r a t i n g  which ,  we have  the e x p r e s s i o n  for  E 

4 C 

C ~ ( t :  ~ ) - ? C ~ = 3 a ' C ~ - ~ - }  - I _g_lnl(a E ) 2 [ a 2 + a T + ( ~ ) ~ ] - I ) _ E  

t a i 
a ~ v - ~ a r c t g [ a - ~ 3 - V ' ( 2 E  + a ) ]  ( a = ~ )  

6 ~ We wi l l  c o n s i d e r ,  f i na l l y ,  the so lu t i on  on s u b g r o u p  X 3 + Xso H e r e ,  we have  

w h e r e  F o b e y s  the  cond i t i on  

E = ( i + x ) F ( ~ ) ,  ~ = u  

d2F ( i 1 )  dF 
d~.~ + ~ - + - ~ T  --~-=0 

= e 4~, F =  e ~ ~ (z) 

- - ~ )  = 0, p (o)  = ~ 

which by  means of substitution 

is  r e d u c e d  to the f o r m  

(5.17) 

(5 .is) 

(5.19) 

(5.20) 

(5.21) 

Equa t ion  (5.20) a d m i t s  the p a r t i c u l a r  s o l u t i o n  ~ = 1, to which  c o r r e s p o n d s  

E = Ix (t + x)]'/, t-'z, 
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7 ~ We will cons ider  the solution on subgroup X 3 admiss ib le  by Eq. (1.3) for  a r b i t r a r y  (r(E). 
va r ian t s  of ope ra to r  X 3 

1 1 =  x ~/4t ,  Is---- E 

de te rmine  the f o r m  of the unknown solutions 

The in- 

E = E ( ~ ) ,  ~ = x  ~ /4 t  

and f rom (1.3)fol lows the equation 

d~E I_ ~ ]dE 
d~ + + ~ (E) ~ = 0 (5.22) 

6. Some of these solutions of the nonlinear equation of hea t  conduction were  obtained e a r l i e r  by 
other  authors .  

The o rd inary  di f ferent ia l  equations for  the invar ian t  solutions on subgroup X a + c~X4 in ease  (B) were  
obtained by G. I. Barenbla t t  [7] by the dimensional i ty  theory method and solved by h im approx imate ly .  

Equation (5.10) was obtained and solved by T. R. Soldatenkov approx imate ly  in an examinat ion of the 
p rob lem of penetrat ion of an e l ec t romagne t i c  field into p l a sma  (problem of the nonlinear skin effect) [5]. 

The fo rm of all  possible  invar iant  solutions of the nonlinear equation of heat  conduction, as a l r eady  
noted, was given by L. V. Gvsyannikov in [1]. 

L I T E  R A T U R E  C I T E D  

1. L . V .  Ovsyannikov, "Group p rope r t i e s  of the equation of nonlinear hea t  conduction," Dokl. Akad. Nauk 
SSSR, 125, No. 3, 492-495 (1959). 

2. N . G .  Chebotarev,  Lie Group Theory [in Russian],  Gostekhteor izdat ,  Moscow--Leningrad (1940). 
3. L . P .  E isenhar t ,  Continuous T r a n s f o r m a t i o n  Groups [Russian t rans la t ion] ,  Izd. Inost r .  Lit . ,  Moscow 

(1947). 
4. L . V .  Cvsyannikov,  Group Proper t i e s  of Different ial  Equations [in Russian],  Izd. SC. AN SSSR, Novo- 

s ib i r sk  (1962)o 
5. T . R .  Soldatenkov, "Penet ra t ion  of an e l ec t romagne t i c  field into a p l a sma  in the case  of a nonlinear 

Chin 's  law,"  Nucl. Fusion, 10_2 No. 1, 69-73 (1970)o 
6. J .  K e r r e b r o c k ,  "Elec t r ica l  conduction of gases  at a high e lec t ron  t e m p e r a t u r e , "  in: Engineer ing 

P rob lems  in Magnetohydrodynamics  [Russian t ransla t ion] ,  Mir ,  Moscow (1965). 
7. G . I .  Barenbla t t ,  "Some unsteady liquid and gas motions in a porous med ium,"  Pr ik l .  Matem.  i Mekhan., 

16___, No. 1, 67-78 (1952). 

292 


